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ABSTRACT 

For the rational integer a and the rational prime b, let P(a,b) be the set of 
primes p such that 

a b e -  
(i) (p, a(a - 1)) = 1, b ](p - 1), 3c e N, b,~ c, p [ 

a-Z-z-i_ 11 �9 

A natural integer q satisfies (i) iff q is a power product from P(a,b). In the 
(additively written) Abelian group G, g--'.- ag permutes the elements of G # 
in cycles whose lengths are multiples of b, but not ofb2, iff G is a n-group with 
n c P (a, b). The case a = -- 2, b = 2 has combinational applications. 

1. Introduction 

Let G be an additively written periodic group with the following proper ty :  that  

there exist a rat ional  integer a and a rat ional  pr ime b such that  the mapp ing  

g ~ ag permutes  the elements of  G ~' in cycles, the length of  each cycle being 

some multiple of  b but  not  of  b 2. It  turns out that  the presence or absence o f  this 

proper ty  depends not  so much  on the structure of  G as on the set o f  primes 

dividing the orders of  its elements. The  cases b = 2 and a = - 2, b = 2 are 

discussed further,  the latter having combinator ia l  applications. 

2. The general case 

NOTATION. a is a rat ional  integer, b is a rat ional  prime, q and c are positive 

integers. G is an additively written group,  G # is the set of  its nonzero elements, 

I G[ is the order  of  G (when finite). 

DEFINITION 1. q E Z(a, b) if  q satisfies the following (partly redundant)  condi- 

t ions:  
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(1) (q,a(a -- 1)) = 1 

(2) b l q  - 1 
a b ~ -  1 

(3) 3c, b X c, q - ~ - 1  " 

Israel J. Math.) 

The subset of Z(a, b) consisting of primes will be denoted by P(a, b). 

DEFINrrION 2. The additively written group G ~ G(a, b) if the mapping g ~ ag, 

~'g ~ G, permutes the elements of G # in cycles, the length of each of which is 

divisible by b, but not by b 2. Thus, G(a, b) can contain no group having elements 

of infinite order; hence we only discuss periodic or torsion groups, such as, finite 

ones. 

Our main purpose is the proof of the following assertion. 

PROPOSITION 3. G is in G(a, b) if and only if every prime dividing the order 

of some element of G ~ is in P(a,b). 

REMARK. Taking b composite, this is false. Let G be the cyclical group of order 

31, take a = 5, b = 6. One verifies (31,20) = 1, 6 [ (31 -1 ) ,  311((56- 1) / (5-1))  

= 3906 = 31 x 126. Thus, by Definition 1, 31~Z(5,6).  But in G, g ~ 5g is an 

automorphism of order 3, not 6. 

For the proof of Proposition 3 we need several lemmas. 

LEMMA 4. G~G(a,b) if and only if every cyclical subgroup of G is in 

a(a, b). 

The proof is immediate, since g ~ ag takes no element outside the cyclical group 

it generates. 

LEM.VIA 5. Proposition 3 holds for cyclical groups of prime order q. 

PROOF. Suppose first that G e G(a, b); then. whether q = [ G I is a prime or not 

conditions (1) and (2) of Definition 1 follow. For if g ~ ag is to permute the 

elements of G 3, no element of G * may have an order dividing a, since it would be 

mapped on zero. Nor may the order of an element divide a - 1, since such an 

element would be mapped on itself (giving a cycle of length 1). Since a cyclical 

group of order q contains elements of every order dividing q, this gives (1, 1). 

It also follows that q - 1 = I G # [ is divisible by b, since G # is to be partitioned 

into cycles, the order of each being a multiple of b, and this is (1, 2). 

Let now q be a prime number and let m be the least integer such that 

a m = 1 (mod q) (that is, let a belong to the exponent m, modulo q), then obviously 
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all cycles will be of length m. By hypothesis, m is a multiple of b, say m = b �9 c 

with b,~c; then abc -- 1 (modulo q), aC~ i (modulo q), thus q divides the integer 

(a b e -  1)/(a ~ -  1), which is (3). 

Conversely, suppose q �9 P(a, b). Then m, in the notation above, divides b" d 

where d is the greatest co.n;non deno.ninator of c and (q - l)/b. If mid  then 

a n = 1 (modulo q). Hence a c = 1 (modulo q) and (a b~- ~)/(a ~ - 1) is a sum of b 

terms, each congruent to 1 (modulo q) so, since q = 1 (modulo b) by (2), q cannot 

divide that sum. Therefore m X d, m I bd ~ b I m (b being a prime). This completes 

the proof of Lemma 5. 

COXOLLARY 6. The "only i f"  part of Propasition 3 holds in the general case, 

since a cyclical group G will contain elements of any prime order dividing I G I. 

LEMMA 7. Proposition 3 holds for cyclical groups of prime power order, 
q =pk. 

PROOf. By Corollary 6, we only have to show the " i f "  part. This might be 

verified directly, but it seems shorter to use a result of Le Veque [l ,  Th. 

4-6, p. 52]. 

THEOREM 8. I f  a belongs to the exponent v, modulo p and if pZ is the largest 

power of p dividing a v -  1, then a belongs, modulo pk, to the exponent v" p" 

where r = max (0, k - z). 

Let thus a belong to the exponent v, modulo p, where v = b.c, bXc;  then, in 

the notation of Theorem 8, pZl(a b~- 1), pZX(aC-1) for some z, therefore 

pkl(abC'--I ) with cl = c'P r, and p , [ ' ( a ~ ' - l )  since b,~cx, thus 

pkl((ab~'-- l ) /(a c ' -  1)). 

Hence for a primitive or generator element go ~ G, the cycle will be of length 

bc~ = bcp', while elements of the form pSg o with 1 _< s < r will permute in cycles 

of length bcp "-~. This completes the proof of Lemma 7. 

LEraMA 9. I f  G3 = Gx @ G2, then G 3 �9 G(a, b) if and only if both summands 

belong to G(a, b). 

PgooF. Necessity follows from Lemma 4. (If one summand contains a cyclical 

subgroup violating the condition of Definition 2, the same will hold for the sum.) 

For sufficiency, we appeal again to Lemma 4. Let g3 = gi + g2, for gt �9 Gl, 

gz �9 G2. If  either term is zero, {g3} will still satisfy the condition, by the hypothesis 

on Gx and G2. Thus suppose 91 s G~, g2 �9 Gz ~. If  g~ belongs to a cycle of length 
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be1 and 02 to one of length be2, 9a will belong to a cycle of length bca, where c3 

is the lcm of ca and c2, and from b X cl, b,~ c2 we have b,~ ca. Thus the cyclical 

group {91 + 92} belongs to G(a, b) and this, with Lemma 4, finishes the proof. 

3. Proof  o f  Proposition 3 

By Corollary 6, all one has to check is that p ~ P(a, b) for every p dividing the 

order of an element, then G is indeed in G(a, b). By Lemma 7, this will hold for 

every cyclical subgroup of prime power order. If  {O} is a cyclical subgroup of 

order n, where n is a power product of different primes, there exists a presentation 

(unique, up to isomorphism) of {9} as direct sum of cyclical groups of the cor- 

responding prime power orders, and a repeated application of Lemma 9 shows 

that {9} ~ G(a, b). Hence every cyclical subgroup of G is in G(a, b) and so, by 

Lemma 4, is G itself. This completes the proof. 

Another formulation of Proposition 3 would be: G is in G(a, b) if and only if G 

is a H-group, with H _ P(a, b). 

The following purely arithmetical result might be proved, very much oa the 

same lines as Le:rl~as 5, 7, and 9. 

I.EMMA 10. q ~Z(a, b) if and only if every prime factor of q is in P(a,b). 

This leads immediately to two alternative formulations of Proposition 3, (the 

second one, for finite groups only). 

PROPOSmON 3'. The periodic #roup G is in G(a, b) if and only if the order of 

each element of G ~ is in Z(a, b). 

PROPOSITION 3". The finite 9roup G is in G(a, b) if and only if ]Gle Z(a, b). 
(This is so since, following Lagrange, the order of every element divides the 

group order.) 

4. The case b = 2 

DEFINmON 11. We call the cycle generated by g - ,  ag of the first kind if it 

contains - x for every x ~ G in it; otherwise, it is of the second kind. It is readily 

seen that a cycle of the first kind is of even length, and that cycles of the second 

kind occur in pairs. Both kinds of cycle may appear in the same group, as for 

instance !n the cyclical group of order 15 with a = 2. 

PROPOSITION 12. I f  # E G(a, 2), every cycle generated by g-~ ag is of the 

first kind. 
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PROOF. If  p ~ P(a,2), p is odd and divides an integer of the form 

(a z c -  1)/(a c -  1) = a~+ 1 

with c odd. If (p - 1, c) = d, a will belong, modulo p, to the exponent 2d, and we 

shall have a d --- - 1 (modulo p). Thus, in the cyclical group C(p), g -.,, ag will 

always yield - g after d iterations. In any case, p I(a + 1) and, as in the proof 

of Lemma 7, pk will divide a al + 1 where dl (= d .  pr for some r > 0) is again an 

odd number. Therefore, if g generates a cyclical group of order pk, g ~ ag will 

take g into - g after dl iterations. 

Lastly, consider ga = gl + g2, where g~ belongs to a cycle of length 2dl and 

g2 to one of length 2d2, dl, d2 odd. Then d3, the lcm of dt and d2, is an odd 

multiple of each, thus d 3 iterations will take both g~ into - gl and g2 into - g2, 

hence g3 into - g3. Since every element in a cyclical group is (uniquely) the sum 

of elements of prime power orders, this completes the proof. 

REMARK. The elements of P(a, 2) are obviously connected with the quadratic 

residue character of a. (Thus, if p - 1 (modulo 4) and a is a non residue, or if 

p - - 1 (modulo 4) and a is a residue, p ~ P(a, 2).) We shall further elaborate 

this connection in the subcase discussed in Section 5. 

5. The subease a = - 2 ,  b = 2 

The groups of G ( - 2 ,  2) are of independent interest since the Abelian ones 

appear in some combinatorial designs (refer to [2], [3]). They include, as we 

shall see presently, all groups of prime order p where p is a Mersenne prime. 

These have been used by Shaugnessy [3] in combinatorial constructions. 

A prime p ~ P ( -  2, 2) if and only if p divides an integer of the form ( -  2)c+ 1 

where c is odd, or equivalently, 2 c -  1, c odd. If  this integer itself is a prime, it is 

called a Mersenne prime (7,31,127...). In any case, p E P ( - 2 , 2 )  if 2 belongs 

(modulo p) to an odd exponent dip- 1. Since p -  1 is an even number for 

p > 2, 2 has to be a quadratic residue of p, and this excludes all primes of the form 

8t + 3 (refer to [1, p. 68]). 

If  p = 8t + 7, 2 is a residue and its exponent is a factor of 4t + 3, thus 

p ~ P ( -  2, 2). There remains the case p = 8t + 1. Here, if t = 2 n. h, n > 0, with 

h odd, then p -  1 = 2mh, for m = n + 3 and we know a priori that 2, being a 

residue, belongs to the (unique) multiplicative cyclical subgroup of order 2 "+2. h. 

For  p e P ( -  2, 2) we require 2 to belong to the smaller multiplicative subgroup of 
order h. 
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ESTIMATE. About one sixth of the primes of the form 8t + 1 belong to P ( -  2, 2). 

That is to say, of a large number N of primes of this form we expect about / ;N to 

be in P ( -2 ,2 ) .  

HEURISTIC PROOF. 

(i) In the sequence of primes of the form 23 +n. h + 1, h odd, we expect to find 

n = 0 in one half of the cases, n = 1 in one fourth of them and, generally, the 

event n = k to occur with relative frequency 2 -k-~. 

(ii) For n = k, 2 belongs to the subgroup of order 2 k+2. h and we expect 2 to 

belong to the smaller subgroup of order h once in 2 k§ times. 

Thus for each k we expect a contribution of N . 2  -2k-a, and altogether 

{-N ~g~'=o 2-2t  = IN. 

Of the first 295 primes of the form 8t + 1, 42 belong to P ( -  2, 2). The first 

few are 73, 89, 233, 337, 601. 

To sum up: Z ( -  2,2) consists of all the primes of the form 8t - 1, of about 

one sixth of the primes of the form 8t + l, and of their power products. 

Lastly, let us see how information on the residue character of 2 allows us to 

obtain more details on P ( -  2, 2) n {8t + 1}. For this, we appeal to the inves- 

tigations of Whiteman [4]. Note that each prime of the form 8t + 1 may be 

written uniquely in the form p -- a 2 + b 2 -- c 2 + 2d 2, b and d even [1, p. 128, 

Cor. and Prob.]. Then, if 2 is at least an octic residue: 

(5.1) (2/p)s = 1 :.- 2 t(p-l) - ( -  1)t(P-t).( - 1) tb (modulo p) [4, Th. 2]. 

(5.2) (2/p)x6 = 1 * 2 tp-1)'6 - ( -  1)b/t6+d/4(modulo p) [4, Th. 3]. 

These congruences are valid whenever the relevant exponents are integers. 

From this we obtain: 

(5.3) For n = 3, p = 16t + 9, p e P ( - 2 , 2 )  if and only if b -  8 (modulo 16); 

then ~(p - 1) is odd. Thus, from the right-hand side of (5.1), {b should be odd as 

well. 

(5.4) For n>=4, p ~ P ( - 2 , 2 )  only if b - 0  (modulo 16) and b + 4 d -  0 

(modulo 32). This follows again from the right-hand side of (5.1) where ~ p  - 1) 

is even, hence -~b should be even as well, and from the right-hand side of (5.2). 

If  n = 4, p = 32t + 17, this condition is also sutficient, because then the exponent 

of the left-hand side of (5.2) is an odd integer. A case in point is p = 337 = 9 2 

+ 162 = 7 2 + 2" 12 2, with 16 - 0 (modulo 16) and 16 + 4" 12 -- 0 (modulo 32). 
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Observe finally that (5.3) gives us a convenient construction of  some primes 

with the desired property: list all sums a 2 + b 2 with a --- 8al + 3, b = 16bl + 8 

(to ensure p = 9 (modulo 16)) and select the prime values. 
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